One test, a lifetime of precision familial hypercholesterolemia reports

Authors: <u>Aditi Babel</u>¹, Mahmoud Barbir², Emma Neves², Riyaz Patel³, Steve E Humphries⁴, Cian Murphy⁴, Theodosia Charitou⁵, Mark Bartlett⁶

Affiliations

- ¹ Imperial College Healthcare NHS Trust, London, U.K.
- ²Royal Brompton Hospital, London, U.K.
- ³ Barts Health NHS Trust, London, U.K.
- ⁴ University College London Hospitals NHS Foundation Trust, London, U.K.
- ⁵ University of Thessaly, Thessaly, Greece
- ⁶ StoreGene, London, U.K.

Introduction

Familial hypercholesterolemia (FH) affects approximately 1 in 250 people in the UK, of which less than 10% are diagnosed. Here, we evaluate the utility of the StoreGene whole genome sequencing (WGS) approach to comprehensively characterise individuals with FH.

Methods

Saliva samples from 16 participants who met the Simon-Broome FH diagnostic criteria were sent for DNA extraction and sequencing. Four StoreGene reports were generated: 1) FH 4-gene variant assessment, 2) LDL-C polygenic risk score (PRS), 3) *SLCO1B1* variant linked to Simvastatin-induced myopathy, and 4) Lp(a) concentration gene scores. Results were compared to previous biochemical and panel tests by NHS-accredited laboratories.

Results

One sample per participant was used to carry out WGS, and StoreGene reports were generated in 22 days, vs. 2 samples and 42 days for comparator testing. One sample was discarded due to low mapping quality. 15 WGS samples were analysed yielding 100% concordant results with comparators. Identical pathogenic variants were identified in 9 (60%) of cases, with 11 (73%) cases likely to have a polygenic aetiology (LDL-C PRS > 5ⁿ decile). The c-index for Lp(a) concentration between the two methods was 0.79. A pharmacogenomic risk variant in *SLCO1B1* was identified in one participant.

Conclusions

StoreGene WGS showed significant benefits where multiple testing is required, including concordant outcomes with available panel tests, faster turnaround time, a wider range of available tests, and minimised sample collection with environmental savings on laboratory consumables. Further research should measure its cost-effectiveness and clinical utility.

^[1] Familial Hypercholesterolemia Section (NHS England 2020) (accessed 21/08/2023)

^[2] SouthWest Genomic Laboratory Hub Target Turnaround Times (accessed 21/08/2023)