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Abstract—Parkinson’s disease is a debilitating neurological
condition that affects approximately 1 in 500 people and often
leads to severe disability. To improve clinical care, better assess-
ment tools are needed that increase the accuracy of differential
diagnosis and disease monitoring. In this paper, we report how we
have used evolutionary algorithms to induce classifiers capable of
recognizing the movement characteristics of Parkinson’s disease
patients. These diagnostically relevant patterns of movement
are known to occur over multiple time scales. To capture this,
we used two different classifer architectures: sliding-window
genetic programming classifiers, which model over-represented
local patterns that occur within time series data, and artificial
biochemical networks, computational dynamical systems that
respond to dynamical patterns occurring over longer time scales.
Classifiers were trained and validated using movement recordings
of 49 patients and 41 age-matched controls collected during
a recent clinical study. By combining classifiers with diverse
behaviors, we were able to construct classifier ensembles with
diagnostic accuracies in the region of 95%, comparable to
the accuracies achieved by expert clinicians. Further analysis
indicated a number of features of diagnostic relevance, including
the differential effect of handedness and the over-representation
of certain patterns of acceleration.

Index Terms—Artificial biochemical networks, automated dis-
ease diagnosis, classification, genetic programming, time series
analysis.

I. Introduction

PARKINSON’S disease (PD) is a chronic progressive
neurodegenerative disorder with a characteristic motor
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syndrome caused by a loss of dopaminergic neurons in the
brain. While genetic and environmental factors (e.g., pesticide
exposure) have been shown to increase the risk for developing
PD, in most cases the cause is unknown [1]. It is one
of the most common neurodegenerative disorders, typically
developing between 50–70 years of age. Parkinson’s U.K.
estimates that there are a total of four million people with
PD worldwide, and that 1 in every 500 people in the U.K. has
PD [2]. Within countries with aging populations, such as the
USA and most of Europe, it is expected that the number of
cases of PD will triple in the next 50 years [3].

Although there is currently no cure for PD, early and
suitable treatment greatly increases quality of life [4]. Misdi-
agnosis rates are high, with estimates ranging from 8% to as
high as 25% [5]–[7]. This is because the clinical presentation
of idiopathic PD can mimic other neurological conditions
including essential tremor, progressive supranuclear palsy,
multiple system atrophy, corticobasal syndrome, and vascular
parkinsonism [8]. Even when accurately diagnosed, making
optimal treatment decisions can be daunting for the practicing
clinician because of the number of drug and dosing options
available, the variability in how different patients respond to
the same medications, and the variability in how an individual
patient’s treatment response will change throughout the course
of the disease [9]. Incorrect medication selection and dosage
can lead to unpleasant difficult to treat side-effects, such as
levodopa-induced dyskinesia and hallucinations.

Clinicians fine-tune a patient’s medication regimen based
on their own ratings of the patient’s symptoms (e.g., using
the unified Parkinson’s disease rating scale [10], which rates
symptoms on a 5-point scale) and on patient-rated treatment
response. These metrics may be insensitive to small but
important effects, and of concern, these metrics correlate
only weakly with each other [11]. Better tools are needed
to support clinicians in making accurate diagnoses and in
monitoring medication regimens. The purpose of this paper
is to investigate the feasibility of evolved classifiers applied to
movement data for detecting symptoms1 of PD.

Although the symptoms of PD are variable, all patients
experience some form of movement disorder, including slow-
ing of movement, tremor, rigidity, and impaired balance.
Bradykinesia is the diagnostically most-relevant symptom of

1Or, more correctly, in medical terms, the signs of PD.
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PD; literally slow movement, general use of the term also
encompasses delays or hesitations in movement, sparsity of
movement, and poor rhythmic control. Bradykinesia is clin-
ically assessed using rapidly alternating movements, such
as finger-tapping, where the patient is asked to repeatedly
tap together their thumb and forefinger. Ratings are based
on the clinician’s perceived abnormality of this movement.
Rest tremor is also characteristic of PD, and is typically
evaluated by clinician observation while the patient’s limbs are
at rest. Even for highly trained clinicians, there is considerable
interrater and intrarater inconsistency in judging the severity
of these cardinal symptoms [12], [13], which impairs both
diagnosis and monitoring of PD.

We have previously discussed the possibility of developing a
noninvasive computer-based assessment for PD, which would
objectively measure a patient’s movements [14]–[16]. In a
small feasibility study, the movements of 12 PD patients
and ten age-matched control subjects were recorded while
they traced a geometric design using a graphics tablet. We
found that both genetic programming (GP) [15] and artificial
immune systems [16] were able to classify the PD patients by
recognizing over-represented patterns of movement. However,
the small sample sizes made it difficult to ascertain the
generality of these results with respect to the wider normal
and disease populations.

Other researchers have also applied machine learning al-
gorithms to PD classification, many reporting accuracies in
excess of 90% [17], [18]. However, the use of small samples
(particularly of non-PD subjects) again makes it hard to
determine the generality of these figures. For instance, Tsanas
et al. [18] reported an accuracy of 99% when using support
vector machines to discriminate between vocal recordings of
33 PD patients and 10 controls.

In addition to supporting clinicians in identifying and ac-
curately measuring parkinsonian motor symptoms, techniques
such as GP have the potential to support the discovery of
novel information about symptoms of the underlying disease.
For instance, in related work on cancer diagnosis [19] and the
evaluation of visuo-spatial ability [20], we carried out analysis
of evolved classifier populations to identify conserved patterns
within the data. This kind of approach could be particularly
relevant to PD, where understanding of the disease’s causes,
symptoms, and subtypes is incomplete.

In this paper, we report the results of a much larger clinical
study in which movement data was collected from 49 PD
patients and 41 age-matched controls as they performed a
variety of tasks. Rather than the geometrical figure tracing
task used in our earlier work, we used an electromagnetic
motion capture device to record subjects’ movements while
performing standard PD clinical assessment tasks. This has the
advantage of maintaining the existing testing environment and
its associated metrics. Using this data, we evolved two types
of programmatic classifiers to discriminate between subjects
with and without PD. Analysis of their behavior indicated their
discriminative abilities to be based on recognition of a number
of different patterns within the movement data. By combining
behaviorally diverse classifiers of each type, we were able
to construct ensembles that were highly accurate in detecting

PD motor symptoms. Results suggest that the application of
evolved classifiers to automated movement data is a promising
method for the development of new diagnostic and monitoring
tools.

This paper is organized as follows. Section II provides a
summary of the movement data used to train and validate clas-
sifiers. Section III introduces the classifier architectures and
performance measures used in this paper. Section IV presents
baseline metrics, details of evolved classifiers, behavioral
analysis, and formation of classifier ensembles. Section V dis-
cusses the clinical interpretation of these results and the impli-
cations for biomedical data mining more generally. Section VI
concludes this paper.

II. Clinical Study Data

A. Subjects

Test subjects were recruited from clinics held at the Leeds
Teaching Hospitals NHS Trust, U.K., between August 2009
and October 2010. Forty-nine Parkinson’s patients participated
in the study, each previously diagnosed by a neurologist.
Forty-one age-matched controls were recruited from patients’
spouses and companions and staff in the neurology depart-
ment. Mean ages were 67 years (±9) for patients and 64 years
(±10) for controls. Male to female ratios were 31:18 for
patients and 14:27 for controls, reflecting the higher incidence
of PD in men [21]. Right to left-handedness ratios were 41:8
for patients and 33:8 for controls. The study was granted ap-
proval by the National Research Ethics Service and Medicines
and Healthcare Products Regulatory Agency. Written informed
consent was obtained from all subjects, and their medications
were not altered for the study.2 There was no history of
neurological disease among the control subjects.

B. Movement Tasks

Movement data was collected using a Polhemus Patriot
electromagnetic motion tracking device, whose probes were
attached to the subject’s thumb and index finger while carrying
out prescribed tasks. The Polhemus Patriot has a sampling rate
of 60 Hz, and measures both position and orientation relative
to a point source in real time.

1) Finger Tapping: Finger tapping is a standard clinical
test for assessing bradykinesia. The subjects were asked to
tap their thumb and index finger repeatedly for a duration of
30 s, using each hand in turn. Subjects were asked to carry
out this exercise as rapidly as possible, separating the finger
and thumb as far as they could comfortably achieve.

2) Movement at Rest: Tremor is commonly seen in PD
patients, and typically occurs when a subject is at rest. While
still connected to the Polhemus Patriot, the subject was asked
to place their hands in a resting position on the arm of a chair.
They were then asked to count backward from 100 to distract
them from consciously correcting any involuntary movement.
Motion data was recorded for a duration of 30 s for each hand.

2A requirement for ethical consent. Since medication reduces symptoms,
this makes it harder to discriminate between patients and controls, and
consequently makes diagnosis more difficult. However, the task is comparable
to clinical monitoring, where patients are already undergoing drug treatment.
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Fig. 1. Example recordings of two PD patients carrying out finger tapping.

Fig. 2. Example recordings of two age-matched controls carrying out finger tapping.

3) UPDRS Ratings: During both tasks, a neurologist
with speciality training in movement disorders performed the
UPDRS tremor at rest and finger taps components, which are
scored between 0 and 4 [10]. For tremor at rest, 0 corresponds
to no tremor and 4 corresponds to tremor that is marked in
amplitude and is present most of the time. For finger tapping, 0
corresponds to normal and 4 indicates that the task can barely
be performed.

III. Classification

A classifier is a mapping from a set of data to a set of labeled
classes. Classifiers are induced by training on a subset of
data for which class membership is already known. Following
training, the induced classifier can then be used to predict
the class membership of data, which was not seen during
training. Evolutionary algorithms are a widely used method for
inducing classifiers [22]–[25]. Factors that make them effective
for classification problems include their breadth of search,
relatively low sensitivity to initial conditions, and flexibility in
terms of representation and evaluation of solutions [26]. They
are particularly useful for problems where there is limited
prior understanding of what a solution should look like, where
the method’s breadth of search and ability to use relatively
unconstrained solution representations permits a wide explo-
ration of candidate solutions. This includes many problems

in biology [27] and medicine [28], where classification often
involves modeling processes that are complex, dynamical,
and poorly understood. Examples include the discovery of
relationships in human genetics [29], the interpretation of
noisy biochemical spectral data [19], and the modelling of
genetic sequences [30]. The latter domain offers relevant
examples of where evolutionary algorithms have been used to
evolve relatively unusual classifier architectures, for instance
the use of programmatic expressions [31] and augmented
state machines [32] to describe conserved patterns of DNA
bases. In this regard, evolutionary algorithms appear well
suited to neurological diagnosis, a domain in which there is
often limited understanding of the underlying biology of the
diseases, and consequently limited understanding of the most
appropriate classifier models to use.

A. Classifying Finger Tapping Recordings

There is considerable variation in the way people carry out
finger tapping. PD is one factor that affects how people tap
their fingers, but other factors could include poor dexterity
caused by age, arthritis, or other pathological conditions. As
such, it can be difficult to discriminate PD and control record-
ings through visual inspection. This is reflected in Figs. 1 and
2, which show example recordings of finger tapping carried
out by PD patients and age-matched controls. Nevertheless,
we know that PD affects the way in which people move, and
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can therefore assume that there are characteristic patterns of
movement, which can be used to discriminate PD patients
from normal controls. We can also assume there are multiple
patterns, which occur over multiple time-scales. For instance,
during individual taps, we can expect to see the cog-wheel-like
motion associated with PD movement [33]. Over longer time-
scales, we may see patterns of change in amplitude, frequency,
and velocity.

In recognition of this, we have used two different classifier
architectures to capture patterns that occur over these two time-
scales. To capture the local patterns of movement within a
tap cycle, we used a variant of GP to evolve sliding window
classifiers (see Section III-C). By representing patterns as
mathematical (or more generally, programmatic) expressions,
GP enables considerable flexibility in the way in which
patterns are defined. For this reason, it has often been shown
to outperform methods with more constrained representations
[34]. It also leads to models that are relatively interpretable, a
characteristic which is important for diagnostic classifiers, and
which motivates the analysis later on in this paper. We have
previously used this approach to induce classifiers for several
biomedical diagnosis problems, including our earlier work
on Parkinson’s diagnosis [15], the discrimination of Raman
spectra for cancer diagnosis [19], [35] and the classification
of line drawings for the assessment of visuo-spatial ability
[20].

GP is a useful technique for evolving static classifiers that
describe static features. However, to capture the dynamical
patterns of movements that occur over longer time-scales,
we ideally want a classifier that is also dynamical. While
there have been successful attempts to introduce dynamical
features to GP [36], in general, features such as loops and
memory remain fragile within an evolutionary context. As a
consequence of this, there has been interest in using robust
dynamical systems to represent computation within evolution-
ary systems. These computational dynamical systems (CDS)
[37] include various kinds of recurrent neural network (RNN)
and cellular automata, but also architectures motivated by the
low-level biochemical networks that are directly exposed to
evolution within biological systems. This includes our own
work on artificial biochemical networks (ABNs) [38].

Several forms of CDS, including RNNs [39] and reservoir
computers [40], have previously been applied to time series
classification. In a preliminary study [41], we looked at
whether ABNs can be used to separate neurological time series
data, and found that they perform better at this task than a
comparable RNN. Following from this, in this paper we have
taken a closer look at how dynamical ABN classifiers (de-
scribed in Section III-D) can be used to recognize dynamical
patterns occurring over a period of multiple taps, and how
these complement the static GP classifiers that identify patterns
occurring within single tap cycles.

B. Evolutionary Algorithm

We use the same evolutionary algorithm to evolve both the
GP and the ABN classifiers: a standard generational EA with
a population size of 200, a generation limit of 100, tournament
selection (tournament size 4) and elitism (size 1), with child

Fig. 3. Examples of an implicit context representation CGP solution, show-
ing (a) arrangement of nodes in a Cartesian grid and (b) how the implicit
context between two of the nodes is represented using functionality profiles.
(a) 4×4 IRCGP grid representing the expression (w2 +w6)/(w0 +w6/w7)+
(w2)(−w7)(w9). (b) Interconnections are the result of matching between
functionality profiles. A node’s functionality profile is derived from its own
function and the functionality profiles of the subexpressions bound to its
inputs. For example, the functionality profile of the ÷ node is a weighted
vector sum of its own function (the rightmost element in the functionality
profile—see key at bottom) and the functionality profiles corresponding to
the window offsets (w6 and w7) bound at its inputs.

solutions generated using uniform crossover and mutation in
the ratio 1:4. The objective in both cases is to accurately
discriminate the acceleration time series recorded from PD
patients from those of age-matched controls. We use the area
under the ROC curve as a fitness function to measure this
(see Section III-E for details), and use independent training,
validation and test sets in order to obtain a reliable measure
of classifier generality (see Section III-F).

C. Sliding Window IRCGP Classifier

Implicit context representation Cartesian genetic program-
ming (IRCGP) [42] is a graph-based GP system that uses



LONES et al.: EVOLVING CLASSIFIERS TO RECOGNIZE THE MOVEMENT CHARACTERISTICS OF PARKINSON’S DISEASE PATIENTS 563

Fig. 4. Genetic encoding of an IRCGP expression.

the notion of implicit context [43]–[45] to provide positional
independence to evolving solutions. IRCGP is a variant of
Cartesian GP (CGP) [46]. Like CGP, an IRCGP solution
consists of an n-dimensional grid (where n is typically 1
or 2) in which each grid location contains a function, and
program inputs and outputs are delivered to and taken from
specific grid locations (see Fig. 3). However, unlike standard
CGP, interconnections between functions, inputs and outputs
are specified in terms of a component’s functionality profile:
a vector describing the component’s functional context within
the program (see Fig. 3). Since functionality profiles are inde-
pendent of grid position, this means that a program’s behavior
is more likely to be preserved when variation operators modify
a component’s absolute or relative grid position. In particular,
this has been shown to improve performance when crossover
operators are used [45], [47]. In this respect, the goal of
implicit context is similar to that of homologous [48] and
semantic [49] crossover operators in GP; however, rather than
changing the mechanics of how programs are recombined in
order to preserve function, implicit context maintains function
by reducing the impact of standard crossover operators.

Formally, an IRCGP expression is a tuple 〈F, W, N, O〉.
F is the function set {f0, ..., fn : Rn → R}.
W is the input window {w0, ..., wn : R}.
N is a set of nodes {n0, ..., nn : ni = 〈mi, Pi, Si, P

S
i 〉},

where:

mi ∈ F is the node’s function;
Pi is the node’s functionality profile;
Si ⊂ N ∪ W are the node’s input sources;
PS

i are the node’s input functionality profiles, such that
|PS

i | = |Si|.
PO is a functionality profile describing the network’s
output node.

Note that indices n are used as bound variables in each case.
Functionality profiles are used to express the connections

between nodes in an IRCGP expression and, prior to execution,
are resolved to absolute grid positions (or, for terminal nodes,
input window offsets) using a bottom-up development process.
This process iterates through all the nodes in sequence, from

the first to last row in the first column, and then similarly
through the remaining columns. For each node, it then attempts
to satisfy its input functionality profiles PS

i by identifying
downstream nodes Si with the closest matching functionality
profiles Pi, in terms of Euclidean distance. After all the
nodes’ input functionality profiles have been satisfied, and
the corresponding inputs connected to the closest matching
downstream nodes, the network’s output node is determined
by finding the node with the closest match to PO.

A functionality profile p is a vector {e0, ..., en : 0 � ei � 1}
where |p| = |F |+ |W | and each ei is an element corresponding
to a particular function or window offset. A node’s func-
tionality profile Pi is defined recursively as the mean of its
own function and the functionality profiles associated with its
inputs

Pi = 0.5Pmi + 0.5PS
i (1)

where Pmi is a functionality profile in which the element
corresponding to the node’s function is set to 1 and all other
elements are set to 0. Hence, Pi represents the relative depth
weighted occurrence of functions and window offsets within
the directed acyclic graph of which it is the head node,
assuming its input functionality profiles are fully satisfied (i.e.,
matched to downstream nodes whose functionality profiles are
exact matches) during the development process (see Fig. 3). In
practice, it is unlikely that each node’s functionality profiles
will be fully satisfied. Nevertheless, their inputs will be bound
to the nodes (and corresponding subexpressions) that most
closely resemble the behavioral context declared by their input
functionality profiles, and this will be the case even after they
are recombined within child solutions since the development
process takes place before each new child solution is evaluated.
This, in turn, promotes a process of gradual change, which has
been shown to improve the performance of crossover [44],
as well as leading to other beneficial evolutionary behaviors
[45].

Following [20], IRCGP expressions use a function
set F consisting of the standard arithmetic functions
{+, −, ×, ÷, mean, min, max, mod}. A subject’s movement
data is passed to the IRCGP classifier in the form of a real-
valued time series of length l. This is then input to the evolved
expression via a sliding window of length |W |. Hence, the
evolved expression produces a real-valued output for each of
(l−|W |+1) overlapping time windows within the time series.
The output of the classifier is the mean of these window values,
reflecting the mean occurrence of the evolved pattern within
the subject’s movement data. Window sizes in the range of
10–20 are used, sufficient to cover a single tapping motion
for an average subject.

1) Evolution: During evolution, IRCGP expressions are
linearly encoded as shown in Fig. 4. The mutation rate is
6% for node functions mi, and 4% for the elements of
functionality profiles ei. Real-valued elements (constants and
the elements of functionality profiles) are mutated using a
Gaussian distribution centered around the current value. A
standard uniform crossover operator is used, with crossover
points occurring with p=0.15.
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Fig. 5. Artificial metabolic network processing time series data. The time
series is delivered one value at a time by setting IC = {c0} and the final
classification is read from OC = {cn}. The input signal is propagated both
directly, via e0, and indirectly, through the system’s conservation law.

D. Artificial Biochemical Networks

ABNs are computational dynamical systems whose form
and function are motivated by the biochemical networks
found within biological cells. Like other computational dy-
namical systems (CDSs) [37], they display complex time-
varying behaviors that can be usefully applied to a range
of computational tasks [50], [51]. ABNs have a number of
architectural similarities to other connectionist CDS models,
such as RNNs and cellular automata. However, they also
have important differences, motivated by prominent patterns
of organization that occur in biochemical networks, rather than
(for instance) neural networks. In a previous work, we looked
at a number of variant ABN models, which include features
such as dynamical nodal processes [51], self-modification [52],
conservation laws [50], weak coupling between networks [53],
and higher-order coupling [51]. We found these architectures
to be particularly useful for solving complex control problems,
such as chaos control and legged robot locomotion [38], with
different architectures being beneficial for different problems.
For instance, self-modifying networks are useful when there
is a requirement to switch dynamically between different
behaviors. Notably, we have found the use of discrete maps
within network nodes to be beneficial across a diverse range
of problems [38], [41].

In our preliminary work [41], we found that a specific
kind of ABN, the discrete map artificial metabolic network
(AMN), achieved the highest classification accuracies when
separating neurological time series data. An AMN is an ab-
stract model of a cell’s metabolism, capturing the idea of a set
of enzyme-mediated reactions manipulating the concentrations
of a set of mass-balanced chemicals over a period of time.
In more familiar connectionist (i.e., neural network) terms,
an AMN resembles an RNN in which activation levels are
shared between neurones, and the sum of activation levels
is maintained at a fixed level. In a discrete map AMN,
enzyme-mediated reactions are modelled as nonlinear iterative
maps. These capture the dynamical complexity of the kinds
of processes that occur in biochemical networks [54], but
in a computationally efficient form. In our previous work,
we have found them to be effective for exploring diverse

Fig. 6. Genetic encoding of an artificial metabolic network.

dynamical behaviors, thereby promoting behavioral diversity
within evolving populations [38]. In our initial investigation of
AMNs evolved for time series classification [41], we analyzed
the behavior of a single evolved discrete map AMN and found
that it was highly sensitive to relatively small changes in its
input: a sensitivity which appeared to result from the interplay
between the chaotic behavior of the discrete maps and the
dampening behavior of the conservation law.

Formally, an AMN is a tuple 〈C, E, LC, IC, OC〉
C is the set of chemical concentrations {c0, ..., cn : R};
E is the set of enzymes {e0, ..., en : ei = 〈Si, Pi, mi〉};
where:

Si ⊆ C is the enzyme’s substrates;
Pi ⊆ C is the enzyme’s products;
mi : Si → Pi is the substrate-product mapping.

LC is an indexed set of initial chemical concentrations,
where |LC| = |C|;
IC ⊂ C is the set of chemicals used as external inputs;
OC ⊂ C is the set of chemicals used as external outputs.

AMNs are executed as follows. First, their chemical con-
centrations are initialized from LC. During the course of
execution, external inputs are delivered by explicitly setting
the concentrations of chemicals indicated in IC at appropri-
ate intervals. At each time step, the enzymes synchronously
modify the chemical concentrations according to their defined
mappings. To maintain mass balance, the chemical concentra-
tions are then uniformly scaled so that they sum to 0.5|C|.
Chemicals that have reached saturation (c = 1) and those
which are not present in the chemistry (c = 0) remain
unchanged, preserving these special states. At the end of
execution, outputs are captured from the final concentrations
of the chemicals specified in OC.

An acceleration time series is input to an AMN by setting
the concentration of the first chemical (c0). The time series is
delivered to a network one value at a time, each followed by tb
iterations of the network. Once the whole time series has been
delivered, the network is executed for another ta iterations in
order to allow the dynamics to settle. At this point a single
output value is read from the final concentration of the last
chemical (cn). Using a suitable threshold, this output value
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Fig. 7. Chirikov’s standard map, which maps points within the unit square
and is a general model of conservative discrete dynamical systems with
coexisting ordered and chaotic dynamics. For k = 1.1 (plotted), ordered
dynamics are mostly found in the center and the corners, and chaotic dynamics
mostly occur in the lower and upper regions, excluding the corners. Sampled
trajectories for 200 initial points are shown.

can then be interpreted as the network’s classification for the
time series. The settling parameters, tb and ta, are both evolved
with the network.

1) Discrete Maps: Following [41], we use the follow-
ing set of behaviorally diverse discrete maps to implement
the enzymes’ substrate-product mappings: the logistic map,
Chirikov’s standard map, the baker’s map, and Arnold’s cat
map. Between them, these maps are capable of expressing
a wide range of dynamical phenomena, many of which are
known to occur within natural systems.

The logistic map [55] is a model of biological population
growth, which displays either ordered or chaotic behavior
depending upon the value of a parameter r ∈ [0, 4]

xn+1 = rxn(1 − xn). (2)

In order to allow the map to switch between dynamical regimes
during execution, we use a tunable variant of this map in which
r is set using an extra input, rather than remaining constant.

Chirikov’s map [56] is a model of Hamiltonian systems
whose phase spaces have coexisting ordered and chaotic
regimes (see Fig. 7). The dynamics move from majority-
ordered to majority-chaotic as the parameter k ∈ [0, 10]
increases

xn+1 = (xn + yn+1) mod 1

yn+1 = (yn − k

2π
sin (2πxn)) mod 1.

(3)

The baker’s map [57] and Arnold’s cat map [58] are both
archetypal models of chaotic phenomenon that occur in a range

of systems. They are defined, respectively

(xn+1, yn+1) =

{
(2xn, yn/2) 0 ≤ xn ≤ 1

2
(2 − 2xn, 1 − yn/2) 1

2 ≤ xn < 1
(4)

(xn+1, yn+1) = ([2xn + yn] mod 1, [xn + yn] mod 1). (5)

2) Evolution: During evolution, AMNs are linearly en-
coded as shown in Fig. 6. Each substrate-product mapping mi,
encodes both the choice of discrete map and any associated
parameters. All components of the AMN are subject to point
mutation, at a rate of 6% per component. The number of
chemicals is fixed at 10, and the number of enzymes has a
lower bound of 1, with no upper bound. Crossover points
(p=0.15) always fall between enzymes. Real-valued elements
(LC and parameters associated with nontunable discrete maps,
i.e., r for the logistic map and k for Chirikov’s map) are
mutated using a Gaussian distribution centered around the
current value. Enzymes and enzyme substrates may be added
or removed (p=0.015/element), the former either randomly
(p=0.5) or by duplicating an existing enzyme or substrate
(p=0.5).

E. Classifier Evaluation

A classifier’s ability to correctly assign class membership
to previously unseen data is known as its predictive power.
There are many ways of measuring predictive power [59].
Underlying many of these is the notion of a confusion matrix
(or contingency table), a table recording the number of data
points correctly and incorrectly mapped to each class. In the
binary case, where data points can be considered to be positive
and negative examples of one of the two classes, the confusion
matrix is a two-by-two table showing the number of true
positive (TP), true negative (TN), false positive (FP), and false
negative (FN) predictions.

Below we review the metrics used in this paper.
1) Accuracy: The simplest, and most obvious, measure

of predictive power is the proportion of the data set which is
correctly classified, i.e., the proportion of input cases which are
correctly mapped to their respective class labels. This metric
is known as accuracy. For a binary classifier, it is defined as

Accuracy =
TP + TN

TP + TN + FP + FN
. (6)

Accuracy is commonly used to train classifiers, and can
be readily applied to both binary and multiclass classifiers.
However, it is sensitive to class size distribution, and is
generally a poor choice when there is significant class size
variation [60].

2) Specificity and sensitivity: Two class size insensitive
metrics derived from a binary confusion matrix are specificity
and sensitivity. Specificity, also known as the true negative
rate, is the probability that a negative classification will be
given for a negative data point. Sensitivity, the true positive
rate, is the probability that a positive classification will be
given for a positive data point. They are calculated as follows:

Specificity =
TN

TN + FP
(7)
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Fig. 8. Examples of a PD patient and an age-matched control performing finger tapping over an interval of 3 s, showing (a), (b) raw acceleration data, and
(c), (d) corresponding acceleration sequences after preprocessing. (a) PD patient, raw data. (b) Age-matched control, raw data. (c) PD patient, classifier input.
(d) Age-matched control, classifier input.

Sensitivity =
TP

TP + FN
. (8)

Sensitivity and specificity capture two, often opposing,
aspects of predictive power: 1) the ability to recognize all
positive examples, and 2) the ability to reject all negative
examples. The relative importance of these two activities
depends upon the context in which the classifier is being
used. For example, during medical screening, it is important
to have high sensitivity so that no cases are missed. At a later
stage, when the presence of a disease is being confirmed, it is
important to have high specificity so that patients without the
disease do not undergo unnecessary treatment.

3) ROC Metrics: Many types of classifiers (including those
used in this paper) produce continuous-valued outputs, which
must then be mapped to class labels using thresholds. Conse-
quently, different tradeoffs between specificity and sensitivity
can be achieved by varying these thresholds. This is captured
by a receiver operating characteristic (ROC) curve, a plot
of true positive rate (sensitivity) versus false positive rate
(1−specificity) for all possible thresholds on the classifier’s
output range.

A number of single-valued summary statistics can be calcu-
lated from an ROC curve. The most common of these is the
area under curve (AUC), which is calculated by integrating
the area under the ROC curve, typically using the trapezoid
rule. AUC is equivalent to the probability that a positive data
point will be given a higher output value than a negative data
point [61]. As such, an AUC of 0.5 is equivalent to random
classification. AUC is symmetrical, meaning that a classifier
with an AUC of 1 has the same predictive power as one with
an AUC of 0 (although with an inverted ordering of classes
in its output range). Its relationship to probability means that
the AUC is easy to interpret, making it a popular metric in
medicine [62].

TABLE I

Data Set Sizes

F. Training and Test Data Sets

Two-thirds of the clinical recordings are placed in a training
set, which is used for fitness evaluation. The other third of
the data (referred to collectively as the nontraining data) is
used to measure classifier generality. In situations where we
wish to select the best-performing classifier from a series
of evolutionary runs, the nontraining data is further divided,
approximately equally, into validation and test sets. In this situ-
ation, the validation set is used to identify the best-performing
classifier, and the test set is used to give an unbiased measure
of its discriminative power. See Table I for a summary of
data set sizes. To compensate for any clinical deviations over
the course of the trial, subjects are evenly distributed between
data sets with respect to date of recording. To prevent over-
estimation of performance, left and right hand recordings are
always kept together when used to train bilateral classifiers.

G. Preprocessing

Each sensor’s translational (x, y, z) and rotational (elevation,
azimuth, roll) coordinate data were collected every 1/60th of a
second. For each time index, the Euclidean distance between
the two sensors was calculated, generating a sequence of
sensor separations over time for each subject. These were then
converted into acceleration time series. An initial investigation
suggested that classifiers trained on raw acceleration data were
sensitive to signal noise, and would also converge suboptimally
to simple classifiers based on amplitude alone, a variable
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TABLE II

Baseline AUCs for Gross Data Features

which is moderately predictive of PD (see Table II). To
mitigate this, the data was preprocessed prior to classifier
training. First, to remove noise, the data was down-sampled
by a factor of two and a moving average filter of size 2
was applied. The acceleration data was then truncated to one
standard deviation around the mean and scaled uniformly
to the interval [0, 1] to remove information about absolute
amplitude. Examples of raw and preprocessed acceleration
time series are shown in Fig. 8.

IV. Results

A. Baseline Measures

Previous studies in the medical literature have also con-
sidered using recordings of finger tapping as a basis for
diagnosing movement disorders. These have generally focused
upon gross features of movement data, such as mean amplitude
and velocity. Kim et al. [63], for example, noted a fairly
strong correlation (∼0.8) between UPDRS score and both
velocity and spectral power within gyroscopic recordings of
finger tapping from 40 patients and 14 controls. Similarly,
using various gross features, including amplitude fatiguing,
Ling et al. [64] were able to identify differences in finger
tapping performance between patients with PD and patients
with progressive supranuclear palsy not captured by UPDRS
finger tapping scores.

1) Gross Features: To test the utility of gross features
as a basis for classification, we computed tapping frequency,
mean amplitude, mean speed, and amplitude fatiguing ratio
(the ratio of amplitudes for the first five taps and the last five
taps) for each subject, and then calculated the AUCs when
each of these measures was used to separate patients from
controls. The results are shown in Table II. Mean amplitude
offers the best discrimination between patients and controls,
with an AUC of 0.78 on the dominant hand. While this does
suggest a significant correlation between tapping amplitude
and PD, the level of discrimination is too low to be useful for
diagnosis. Speed appears to be less useful as a predictor of PD,
and the other metrics—frequency and fatiguing—are relatively
ineffective as a basis for classification, and it is unlikely that
a significantly better classifier could be constructed through
linear combinations of these features.

2) Parkinsonian Tremor: We also looked at the incidence
of rest tremor since this is a common symptom of PD and
can be readily measured using spectral analysis methods. To
verify the occurrence of tremor within the 4-6Hz frequency
range indicative of PD [21], we carried out a Fourier analysis
of the rotational components of the data, in which tremor is

Fig. 9. Power spectral density of a patient’s hand movements at rest, showing
a clear peak in the 4–6-Hz band, indicative of Parkinson’s.

most often seen. Power spectrum and confidence limits were
computed using the method described in [65]. These indicated
significant peaks in the 4-6Hz range in one or both hands for
15 (31%) patients (see the example in Fig. 9). Of these, five
displayed tremor in their dominant hand, nine displayed tremor
in their nondominant hand, and one patient exhibited tremor
in both hands. This supports current understanding that the
limited incidence of rest tremor means that it cannot by itself
be used to diagnose PD [66].

B. Evolved Classifiers
Table II shows that dominance has a significant effect

upon discriminatory power, with gross features of the data
having lower predictive accuracy for the nondominant hand.
Consequently, we limited our initial investigation to classifiers
trained on preprocessed finger tapping data collected from
each subject’s dominant hand. Fig. 10 shows the distribution
of AUC scores for the best evolved classifiers from each of
50 runs.

For both classifier architectures, a number of classifiers
were evolved with training and nontraining AUCs of 0.9
and greater. This suggests that both architectures are able to
express patterns that discriminate well between PD patients
and controls. Overall, the ABN runs produced more high-
AUC classifiers than the GP runs, although the best-performing
classifier was a GP expression, with an AUC of 0.96 on the
nontraining data. Fig. 11 shows the ROC curves for the ABN
and GP classifiers with highest discrimination on the validation
set. In both cases, the test set AUC is very high, indicating
that these classifiers generalize well to unseen data. Fig. 10
also shows that, in general, the size of the IRCGP grid and
the length of the matching window has a relatively small
effect upon the ability of the evolutionary algorithm to find
classifiers.

Although most runs led to classifiers with high training
AUCs, the wide nontraining set distributions shown in Fig. 10
show that a number of evolved classifiers had poor generality.
For the GP classifiers, this was caused by over-learning in
a number of runs, with the nontraining set AUCs peaking
early while the training set AUCs continued to increase. This
also explains why the training set AUCs are higher for the
GP runs than for the ABN runs. For the ABN classifiers,
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Fig. 10. Diagnostic power of evolved classifiers on both the training (white)
and nontraining (grey) sets. Notched box plots show summary statistics
over 50 runs. Overlapping notches indicate when median values (thick
horizontal bars) are not significantly different at the 95% confidence level.
(a) Comparison of ABN and IRCGP classifiers, also showing effect of grid
and window (w) size for IRCGP classifiers. (b) Comparison of ABN classifiers
evolved on training data from (left to right) dominant, nondominant, and both
hands. In each case, the first boxplot shows the results from training and the
other two show the diagnostic power for the dominant and nondominant hand
recordings in the nontraining data set.

poor generality was caused by an evolutionary trend toward
parsimonious solutions. Below a certain size (about 3 discrete
maps), we found that solutions displayed high fitness but
poor generality (see [41] for a more in-depth discussion of
this phenomenon). In each case, early stopping and solution
size limits failed to improve generality, suggesting that these
behaviors are due to deceptive fitness landscapes.

C. Handedness

PD is typified by asymmetric onset, and a number of recent
studies have suggested that there is a positive correlation
between a patient’s handedness and the side of their body

Fig. 11. ROC curves for the most discriminative ABN and GP classifiers.
(a) ABN classifier. (b) GP classifier.

Fig. 12. Evolved ABN classifier, comprising two standard maps, one baker’s
map, one logistic map, and ten chemicals.

on which symptoms first present [67], [68]. Our investigation
of gross metrics in Table II tends to support this, showing
that these provide slightly higher discrimination for a subject’s
dominant hand.

To test this relationship further, we separately trained clas-
sifiers using data from the dominant, nondominant and both
hands. Fig. 10 shows that the evolutionary algorithm found
it significantly easier to find high fitness classifiers for the
dominant hand. This pattern is even more pronounced for
discrimination on the data not used for training, suggesting
that it is much harder to perform diagnosis when using
nondominant hand data, and providing strong support for the
findings of [67].

Interestingly, classifiers trained on the nondominant hand
still generalize well to the dominant side. This suggests that
the same pattern is found on both sides, but with greater
incidence or fidelity on the dominant side. It is also notable
that the distribution of classifiers trained on both hands, then
reevaluated on the dominant hand in the nontraining data,
shows less indication of over-learning than those trained solely
on the dominant hand. We can speculate that, by making the
pattern harder to find, this reduces early convergence of the
population.

D. Behavioral Analysis

Fig. 12 shows an evolved ABN, showing how it is relatively
simple in terms of description length, comprising four discrete
maps and ten chemicals. However, due to its dynamical
nature, and the nontrivial collective behavior that results from
coupled discrete maps [69], it is extremely difficult to infer
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Fig. 13. Analysis of an evolved GP classifier, AUCall = 0.919, optimal output threshold ∼3.5. (a) Overlay of data windows which the evolved expression
classifies as (top) normal and (bottom) abnormal. The window offsets used as inputs to the evolved expression are shown by broken vertical lines. (b) Examples
of individual data windows classified as (left) highly normal and (right) highly abnormal. The corresponding patterns in the (top) raw separation and (middle)
raw acceleration data are also shown, with grey regions indicating the parts of the window that contribute to the active classifier inputs.

its functional behavior from its static description. Equation
(9) gives an example of an evolved expression used by a GP
classifier, where wi is the value at offset i within the sliding
window and sub is a subexpression reused by the CGP graph

out = (0.531 + sub)sub

sub = max{w12, w5}
max{w16, w17} + 0.078w7

.
(9)

This is also surprisingly simple, but nevertheless it is still
difficult to understand the pattern of movement it is describing.

1) Local Patterns: For the GP expression, we can gain
insight into its behavior by looking at the time series windows,
which receive either a low or a high output from the expression
since these correspond to the local patterns of acceleration
identified as abnormal or normal in the PD and control
sequences, respectively (or vice versa, depending upon the
ordering of classes in the classifier’s output range). Fig. 13
shows an overlay of all the time series windows that are clas-
sified as particularly normal or particularly abnormal by the
GP expression in (9). Although there is a degree of fuzziness,
it can be seen that there is a distinct over-represented pattern
in each case: a sinuous pattern of acceleration and deceleration
for normal matches, and a pattern centered around two closely
spaced deceleration peaks for abnormal matches. To clarify
the meaning of these patterns, Fig. 13 shows examples of
two windows that are classified as highly normal and highly
abnormal. It can be seen that the sinuous pattern noted in Fig.
13 appears to correspond to a smoothly changing opening
and closing movement. In addition, the closing deceleration

is significantly larger than the opening deceleration, which
reflects the inelastic collision as the two fingers collide at
the end of the movement. The double deceleration pattern in
the abnormal match, by comparison, corresponds to a jerky
pattern of motion in which the final deceleration is of a
similar magnitude to the opening deceleration. Notably, this
jerky motion resembles one of the known symptoms of PD,
cog-wheel rigidity. However, perhaps more interesting is the
abnormal relationship between opening and closing deceler-
ation, which we also observed in other windows labelled as
highly abnormal. This indicates that PD patients are slowing
their fingers prior to the inelastic collision, which in turn is
indicative of a breakdown in sensory feedback, a feature of
PD which has only recently received significant interest in the
medical literature [70].

2) Global Patterns: We cannot perform this kind of
analysis for ABNs since they operate at a sequence-level
rather than a window-level. Instead, we can characterize an
ABN’s transfer function by measuring its response to syn-
thetic time series data with known properties—particularly
properties that are expected to have diagnostic relevance for
PD, such as amplitude, frequency and irregularity. Analyzing
highly discriminative ABN classifiers in this way shows that
they have diverse dynamical responses, suggesting that they
recognize a range of different patterns when carrying out
diagnosis. Fig. 14 gives examples of responses for three
different highly discriminative ABNs when perturbed with sine
waves of differing amplitude, frequency and levels of added
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Fig. 14. Examples showing how different evolved ABN classifiers respond to sinusoidal signals of differing amplitude, frequency and noisiness. Note that
the output scales for (middle) ABN2 and (bottom) ABN3 are logarithmic, with values shown log10. Output responses that fall within the classifiers’ non-
PD range are shown in white; those in the PD range are shown in grey, with intensity proportional to the magnitude of the classifier’s response. (a) and
(b) ABN1: AUCall = 0.893, optimal output threshold ∼0.396770. (c) and (d) ABN2: AUCall = 0.901, optimal output threshold ∼1 × 10−4. (e) and (f) ABN3:
AUCall = 0.911, optimal output threshold ∼1 × 10−68.
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noise (which approximate the jittery movements of some PD
patients).

The ABN in Fig. 14 has a relatively clear amplitude-
frequency response. In terms of distance from the decision
boundary, it responds most strongly to low amplitudes at
low frequencies and all amplitudes at high frequencies. In
the preprocessed movement data, regions of low amplitude
tend to correspond to fatigue and irregular tapping, which
are both seen in PD patients. The high frequency part of the
plot is well outside a subject’s normal tapping frequency, and
the strong response in this region may reflect the presence
of multiple acceleration peaks during a single tap. Again,
this correlates well with the cog-wheel like motion seen in
PD patients. The presence of noise in the synthetic sine
waves also has a slight effect on the ABN’s response, in-
creasing the amplitude at which signals are classified as
PD.

The ABN in Fig. 14 has a less clear response to amplitude
and frequency, classifying sine waves as PD based on the
incidence of intermediate amplitudes, particularly at high
frequencies. Again, this may indicate a response to cog-wheel
like motion. The response to noise is more clear, with the ABN
responding to a wider range of amplitudes as noise increases.
This would suggest that the ABN responds to irregular or
jittery behavior indicative of poor motor control, even when
the amplitude of tapping appears relatively normal.

By comparison, Fig. 14 shows no clear pattern in its
response to either frequency or noise, although it does tend
to classify high amplitude signals as non-PD, which reflects
consistent tapping. This is the most-discriminative of the three
solutions, and presumably its discriminatory ability is based
upon other factors, such as waveform shape.

3) Correlations: This pattern analysis suggests that
evolved classifiers respond to a variety of different signals
within the tapping time series data. This is corroborated by
Fig. 15, which shows the correlations between the output re-
sponses of the ABN and GP classifiers, various gross features
of the finger tapping data, and also the clinician’s UPDRS
tremor and tapping scores.

ABNs 1 and 2 have well correlated outputs. However,
they differ in their correlations with gross features and UP-
DRS scores, suggesting they reach similar classifications but
through slightly different means. The GP classifier’s outputs
correlate fairly well with ABN1, reflecting our observation that
both have strong responses to certain frequency components.
By comparison, the outputs of ABN3 and the GP classifier
have poor correlation, reflecting ABN3’s minimal response to
frequency components. Only the GP classifier has a significant
correlation with the amplitude fatigue ratio, despite having
no global view of the tapping data. The outputs of ABNs 2
and 3 both show small correlations with the UPDRS tremor
score, suggesting that they may be responding to Parkinsonian
tremor—however, the size of the correlation reflects the poor
discriminatory power of tremor as an indicator for diagnosis.
The outputs of all the classifiers show moderate to high
correlations with the UPDRS tapping score, suggesting that
the evolved classifiers are performing a broadly similar task
to the trained clinicians.

Fig. 15. Correlogram showing Spearman correlation coefficients between
ABN and GP classifiers, UPDRS tremor and tapping scores, tapping frequency
(Taps), mean amplitude (Amean), and the ratio of mean amplitudes during
the first five taps and the last five taps (Aratio). Shading intensity shows the
magnitude of correlations. Line direction indicates the direction of correlations
(bottom-left to top-right = positive, top-left to bottom-right = negative).

TABLE III

Performance of Scaled Mean Ensembles

E. Ensemble Classifiers

Since the classifiers appear to respond to different patterns
in the finger tapping data, it seems likely that higher discrim-
ination accuracy could be achieved by forming classifier en-
sembles. There are numerous ways of combining the outputs of
classifiers. For continuous-valued classifiers such as these, one
approach is to use the mean of the classifiers’ outputs. This has
the advantage of maintaining a continuous-valued output, and
therefore allowing different thresholds to be chosen depending
upon how the classifier is used. However, the output ranges
first need to be normalized. We do this by uniformly scaling
the output range of each component classifier to the interval
[0, 1], i.e., the lowest output is mapped to 0 and the highest
output is mapped to 1. For classifiers with a logarithmically
distributed output range, we first take the common logarithm
of the output value.

Table III shows the performance of ensembles constructed
from the classifiers analyzed in the previous section. While
there is a small advantage to combining the different ABNs,
the largest benefit comes from combining the two different
types of classifiers, i.e., an ABN and a GP classifier. In
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Fig. 16. ROC curves for an ensemble and its component classifiers.

particular, the best performance is achieved by combining the
two classifiers which show the least correlation in Fig. 15. This
reflects previous understanding that, when selecting classifiers
to form an ensemble, best results can be obtained by selecting
classifiers whose outputs are least correlated [71]. Fig. 16
shows how the resulting ROC curve improves upon the ROC
curves of the component classifiers, particularly at the low
false positive side. This, in turn, shows the benefit of using two
different classifier models, one which is sensitive to relatively
well characterized local features, and one which is able to
recognize less evident global features.

V. Discussion

A. Sample Sizes

A common issue with medical studies is the use of small
samples of the diseased and healthy populations [72]. Small
samples are particularly commonplace in studies, such as
this one, which require time-consuming and one-off clinical
measurements. Nevertheless, our sample of 49 PD patients and
41 controls compares favorably with other recent PD studies,
including Tsanas et al.’s [18] use of SVNs to discriminate
vocal recordings (32 PD and 10 controls), Kim et al.’s [63]
study of discriminatory features during finger tapping (40 PD
and 14 controls), and Ling et al.’s [64] study of discriminating
movement characteristics (15 PD, 16 controls and 9 progres-
sive supranuclear palsy).

Small samples significantly increase the difficulty of classifi-
cation problems. The smaller the sample size, the greater is the
likelihood that an induced classifier will respond to a spurious
pattern that is over-represented in the sample, rather than (the
aim in this case) a biologically meaningful pattern. This can
be seen in the wide nontraining set distribution in Fig. 10, an
indication that a number of evolved classifiers do not gener-
alize to previously unseen data. It also demonstrates a benefit

of using evolutionary algorithms: the ability to explore a wide
range of solutions, both within and between runs, increasing
the chance of finding those with generality. However, this
also underscores the importance of using separate validation
and test sets, in order to correctly differentiate classifiers that
generalize from those that do not.

In our case, we only used the test set once for each classifier
architecture, in order to measure the generality of the two
classifiers which performed best on the validation set. The
resulting high level of discrimination (see Fig. 11) is a strong
indication that these classifiers have good generality with
regard to the wider PD and neurologically healthy populations.
Our behavioral analysis also supports this conclusion, showing
that the classifiers are responding to features that we would
expect to be diagnostically significant. Hence, the analysis
of evolved classifiers provides a sanity check in addition to
having the potential to inform wider clinical practice.

B. Clinical Perspectives

Fig. 16 suggests an accuracy of around 90%–95%, depend-
ing on the chosen tradeoff between sensitivity and specificity.
This is similar to the accuracies achieved by expert clinicians
when making a diagnosis, and considerably higher than those
achieved in primary and community care [21]. However, it
should be noted that this is not the same problem faced by
clinicians when making an initial diagnosis. In one sense it is
easier since clinicians must discriminate between a number of
related neurological conditions when reaching a diagnosis. On
the other hand, it is harder because the classifier has access to
less information and, because the patients are on medication,
their symptoms are harder to discriminate.

The accuracy of the evolved classifiers in detecting the mo-
tor symptoms of PD suggests that our approach could be used
to develop new diagnostic and monitoring tools. These tools
would offer several important advantages to the clinician and
clinical researcher. Data could be collected efficiently while
the patient performs the standard clinical tests of bradykinesia
and rest tremor that are already a widely accepted part of
PD assessments. Unlike clinician judgement of performance
on these clinical tests, distinct performance factors could be
derived. These factors may prove useful for differentiating PD
from other diseases (e.g., progressive supranuclear palsy), for
characterizing the motor subtypes of PD, and for measuring
an individual patient’s unique motor symptom profile. In
addition, symptoms could be characterized on a fine scale,
which may be more sensitive to small but important changes
in motor features not captured by traditional scales. While this
advantage has clear importance for clinical care, it could also
be relevant to clinical trials, because outcome measures that
are sensitive to small treatment effects do not require as large
sample sizes to establish treatment efficacy. Last, an advantage
of this method is that scores are objectively derived and thus
not impacted by subjective clinician judgment.

Although the present results are promising, more research
is needed before these classifiers are ready to be applied as
a clinical tool. In particular, research on newly diagnosed
or prodromal cases, as well as on patients with other dis-
eases that are often confused with PD, will be needed to
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determine how useful the classifiers are for early and accurate
diagnosis. Studies comparing patients when on and off their
dopaminergic therapies will be necessary to determine the
sensitivity of the classifiers to treatment response. Interrater
reliability should also be evaluated. All of these studies will
need to contrast the efficacy of the classifiers in comparison to
traditional assessments, like the UPDRS, to determine whether
the classifiers provide added utility.

C. Biomedical Data Mining

A distinctive aspect of this paper is the use of dynamical
classifiers, i.e., artificial biochemical networks. Biomedical
signals, such as those produced by the human nervous system,
are complex, nonlinear and nonstationary—in a word, dynam-
ical. Despite this, most work on classification of biomedical
time series data is currently done using static classifiers such
as support vector machines [73] and feed-forward neural
networks [74] operating on data windows or other extracted
static features. There has been some work on applying static
classifiers to dynamical features, such as those produced by
spectral analysis [75] and time-delay embedding [76]. How-
ever, in many cases there is little a priori understanding of the
kind of dynamical features we are looking for—and, in these
cases, it arguably makes more sense to fit a general dynamical
model to the data, such as a recurrent neural network [39], a
reservoir computer [40], or in our case, an ABN. We can see
the advantage of this approach in our work, where the ABN
classifiers are considerably more diverse and, on average, more
discriminative than the static GP classifiers.

A more general advantage to using evolutionary algorithms
in concert with an expressive dynamical representation is
that we can search a broad space of classifiers. Furthermore,
because most of these classifiers will not mirror human thought
processes, they are able to capture patterns that humans might
not notice, and consequently can be used as a source of novel
domain knowledge. For example, by analyzing evolved clas-
sifiers and their distributions, we have made several insights
that may be of interest to clinicians: the differential effect
of dominance on diagnostic accuracy, the over-representation
of certain patterns of acceleration in the movements of PD
patients, and combinations of amplitude and frequency which
appear to have diagnostic power.

However, a potential disadvantage of this approach is that
we may evolve good classifiers, but have little understanding
of how they work. Although biologically motivated algorithms
are often competitive against conventional approaches, they
are sometimes criticized for producing black boxes whose
internal logic is incomprehensible to domain experts. This is a
particularly significant issue for medical diagnosis: while black
box classifiers can be used to guide or support a diagnosis,
an automated diagnosis (for instance, during screening) will
only be accepted if the medical practitioner has confidence in
the basis of the diagnosis. In this paper, we have addressed
this through analysis of the evolved classifiers, showing how
relatively simple analytical methods can produce significant
insight into their diagnostic behavior. Nevertheless, the pic-
ture is incomplete, particularly with regard to the dynamical
classifiers, and an important part of future work will be to

develop appropriate methods for ascertaining these classifiers’
detailed behavior. Existing work on rule extraction from neural
networks [77], and methods for modelling dynamical systems
as finite state automata [78], would be good places to start.

Finally, we have also seen that there is a clear advantage
to forming ensembles from diverse classifiers, both in terms
of classifier behavior and classifier model. The use of clas-
sifier ensembles is a common theme in the machine learning
community, and is typified by standard induction techniques
such as boosting and bagging [79]. Recently, there has been a
growing interest in how evolutionary algorithms can be used
to induce classifier ensembles. An evolutionary algorithm’s
population is a natural source of diversity, both within and
between runs, and methods such as multiobjective ranking
[25] and coevolution [80], [81] can effectively leverage this
resource in order to generate effective ensembles. It seems
likely that these kinds of techniques could be used to further
improve the diagnostic accuracy of PD classifiers, and this is
something we plan to look at in future work.

VI. Conclusion

In this paper, we have shown how evolutionary algorithms
can be used to induce classifiers able to discriminate Parkin-
son’s disease patients from age-matched controls with accura-
cies in the region of 95%. The classifiers were trained using
acceleration time series data collected while subjects carried
out a standard clinical finger tapping task. To capture the
multiscale patterns present in this data, we used two different
classifier architectures: sliding window genetic programming
expressions and artificial biochemical networks. Behavioral
analysis indicated that the induced classifiers were able to
capture a diverse range of patterns, which discriminate the
movements of Parkinson’s patients from those of neurolog-
ically healthy controls. By forming classifier ensembles, we
then showed how behaviorally diverse classifiers provide high
discriminative power.
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